Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty-Guided Lung Nodule Segmentation with Feature-Aware Attention (2110.12372v4)

Published 24 Oct 2021 in eess.IV and cs.CV

Abstract: Since radiologists have different training and clinical experiences, they may provide various segmentation annotations for a lung nodule. Conventional studies choose a single annotation as the learning target by default, but they waste valuable information of consensus or disagreements ingrained in the multiple annotations. This paper proposes an Uncertainty-Guided Segmentation Network (UGS-Net), which learns the rich visual features from the regions that may cause segmentation uncertainty and contributes to a better segmentation result. With an Uncertainty-Aware Module, this network can provide a Multi-Confidence Mask (MCM), pointing out regions with different segmentation uncertainty levels. Moreover, this paper introduces a Feature-Aware Attention Module to enhance the learning of the nodule boundary and density differences. Experimental results show that our method can predict the nodule regions with different uncertainty levels and achieve superior performance in LIDC-IDRI dataset.

Citations (14)

Summary

We haven't generated a summary for this paper yet.