Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Study of Acoustic Features in Arabic Speaker Identification under Noisy Environmental Conditions (2110.12304v1)

Published 23 Oct 2021 in eess.AS and cs.SD

Abstract: One of the major parts of the voice recognition field is the choice of acoustic features which have to be robust against the variability of the speech signal, mismatched conditions, and noisy environments. Thus, different speech feature extraction techniques have been developed. In this paper, we investigate the robustness of several front-end techniques in Arabic speaker identification. We evaluate five different features in babble, factory and subway conditions at the various signal to noise ratios (SNR). The obtained results showed that two of the auditory feature i.e. gammatone frequency cepstral coefficient (GFCC) and power normalization cepstral coefficients (PNCC), unlike their combination performs substantially better than a conventional speaker features i.e. Mel-frequency cepstral coefficients (MFCC).

Summary

We haven't generated a summary for this paper yet.