Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Semantic Segmentation of Vessel Images using Leaking Perturbations (2110.11998v1)

Published 22 Oct 2021 in eess.IV and cs.CV

Abstract: Semantic segmentation based on deep learning methods can attain appealing accuracy provided large amounts of annotated samples. However, it remains a challenging task when only limited labelled data are available, which is especially common in medical imaging. In this paper, we propose to use Leaking GAN, a GAN-based semi-supervised architecture for retina vessel semantic segmentation. Our key idea is to pollute the discriminator by leaking information from the generator. This leads to more moderate generations that benefit the training of GAN. As a result, the unlabelled examples can be better utilized to boost the learning of the discriminator, which eventually leads to stronger classification performance. In addition, to overcome the variations in medical images, the mean-teacher mechanism is utilized as an auxiliary regularization of the discriminator. Further, we modify the focal loss to fit it as the consistency objective for mean-teacher regularizer. Extensive experiments demonstrate that the Leaking GAN framework achieves competitive performance compared to the state-of-the-art methods when evaluated on benchmark datasets including DRIVE, STARE and CHASE_DB1, using as few as 8 labelled images in the semi-supervised setting. It also outperforms existing algorithms on cross-domain segmentation tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jinyong Hou (5 papers)
  2. Xuejie Ding (4 papers)
  3. Jeremiah D. Deng (12 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.