Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Automatic Grading of D3.js Visualizations (2110.11227v1)

Published 21 Oct 2021 in cs.HC

Abstract: Manually grading D3 data visualizations is a challenging endeavor, and is especially difficult for large classes with hundreds of students. Grading an interactive visualization requires a combination of interactive, quantitative, and qualitative evaluation that are conventionally done manually and are difficult to scale up as the visualization complexity, data size, and number of students increase. We present a first-of-its kind automatic grading method for D3 visualizations that scalably and precisely evaluates the data bindings, visual encodings, interactions, and design specifications used in a visualization. Our method has shown potential to enhance students' learning experience, enabling them to submit their code frequently and receive rapid feedback to better inform iteration and improvement to their code and visualization design. Our method promotes consistent grading and enables instructors to dedicate more focus to assist students in gaining visualization knowledge and experience. We have successfully deployed our method and auto-graded D3 submissions from more than 1000 undergraduate and graduate students in Georgia Tech's CSE6242 Data and Visual Analytics course, and received positive feedback and encouragement for expanding its adoption.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Matthew Hull (14 papers)
  2. Connor Guerin (2 papers)
  3. Justin Chen (32 papers)
  4. Susanta Routray (4 papers)
  5. Duen Horng Chau (109 papers)