Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hyper-reduced MAC scheme for the parametric Stokes and Navier-Stokes equations (2110.11179v1)

Published 21 Oct 2021 in math.NA and cs.NA

Abstract: The need for accelerating the repeated solving of certain parametrized systems motivates the development of more efficient reduced order methods. The classical reduced basis method is popular due to an offline-online decomposition and a mathematically rigorous {\em a posterior} error estimator which guides a greedy algorithm offline. For nonlinear and nonaffine problems, hyper reduction techniques have been introduced to make this decomposition efficient. However, they may be tricky to implement and often degrade the online computation efficiency. To avoid this degradation, reduced residual reduced over-collocation (R2-ROC) was invented integrating empirical interpolation techniques on the solution snapshots and well-chosen residuals, the collocation philosophy, and the simplicity of evaluating the hyper-reduced well-chosen residuals. In this paper, we introduce an adaptive enrichment strategy for R2-ROC rendering it capable of handling parametric fluid flow problems. Built on top of an underlying Marker and Cell (MAC) scheme, a novel hyper-reduced MAC scheme is therefore presented and tested on Stokes and Navier-Stokes equations demonstrating its high efficiency, stability and accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.