Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum field theories, Markov random fields and machine learning (2110.10928v2)

Published 21 Oct 2021 in cs.LG, cond-mat.dis-nn, cond-mat.stat-mech, and hep-lat

Abstract: The transition to Euclidean space and the discretization of quantum field theories on spatial or space-time lattices opens up the opportunity to investigate probabilistic machine learning within quantum field theory. Here, we will discuss how discretized Euclidean field theories, such as the $\phi{4}$ lattice field theory on a square lattice, are mathematically equivalent to Markov fields, a notable class of probabilistic graphical models with applications in a variety of research areas, including machine learning. The results are established based on the Hammersley-Clifford theorem. We will then derive neural networks from quantum field theories and discuss applications pertinent to the minimization of the Kullback-Leibler divergence for the probability distribution of the $\phi{4}$ machine learning algorithms and other probability distributions.

Citations (6)

Summary

We haven't generated a summary for this paper yet.