Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduced Basis Approximations of Parameterized Dynamical Partial Differential Equations via Neural Networks (2110.10775v1)

Published 20 Oct 2021 in math.NA and cs.NA

Abstract: Projection-based reduced order models are effective at approximating parameter-dependent differential equations that are parametrically separable. When parametric separability is not satisfied, which occurs in both linear and nonlinear problems, projection-based methods fail to adequately reduce the computational complexity. Devising alternative reduced order models is crucial for obtaining efficient and accurate approximations to expensive high-fidelity models. In this work, we develop a time-stepping procedure for dynamical parameter-dependent problems, in which a neural-network is trained to propagate the coefficients of a reduced basis expansion. This results in an online stage with a computational cost independent of the size of the underlying problem. We demonstrate our method on several parabolic partial differential equations, including a problem that is not parametrically separable.

Citations (1)

Summary

We haven't generated a summary for this paper yet.