Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Potent preservers of incidence algebras (2110.10676v2)

Published 20 Oct 2021 in math.RA

Abstract: Let $X$ be a finite connected poset, $F$ a field and $I(X,F)$ the incidence algebra of $X$ over $F$. We describe the bijective linear idempotent preservers $\varphi:I(X,F)\to I(X,F)$. Namely, we prove that, whenever $\mathrm{char}(F)\ne 2$, $\varphi$ is either an automorphism or an anti-automorphism of $I(X,F)$. If $\mathrm{char}(F)=2$ and $|F|>2$, then $\varphi$ is a (in general, non-proper) Lie automorphism of $I(X,F)$. Finally, if $F=\mathbb{Z}_2$, then $\varphi$ is the composition of a bijective shift map and a Lie automorphism of $I(X,F)$. Under certain restrictions on the characteristic of $F$ we also obtain descriptions of the bijective linear maps which preserve tripotents and, more generally, $k$-potents of $I(X,F)$ for $k\ge 3$.

Summary

We haven't generated a summary for this paper yet.