Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NAS-HPO-Bench-II: A Benchmark Dataset on Joint Optimization of Convolutional Neural Network Architecture and Training Hyperparameters (2110.10165v1)

Published 19 Oct 2021 in cs.LG and cs.AI

Abstract: The benchmark datasets for neural architecture search (NAS) have been developed to alleviate the computationally expensive evaluation process and ensure a fair comparison. Recent NAS benchmarks only focus on architecture optimization, although the training hyperparameters affect the obtained model performances. Building the benchmark dataset for joint optimization of architecture and training hyperparameters is essential to further NAS research. The existing NAS-HPO-Bench is a benchmark for joint optimization, but it does not consider the network connectivity design as done in modern NAS algorithms. This paper introduces the first benchmark dataset for joint optimization of network connections and training hyperparameters, which we call NAS-HPO-Bench-II. We collect the performance data of 4K cell-based convolutional neural network architectures trained on the CIFAR-10 dataset with different learning rate and batch size settings, resulting in the data of 192K configurations. The dataset includes the exact data for 12 epoch training. We further build the surrogate model predicting the accuracies after 200 epoch training to provide the performance data of longer training epoch. By analyzing NAS-HPO-Bench-II, we confirm the dependency between architecture and training hyperparameters and the necessity of joint optimization. Finally, we demonstrate the benchmarking of the baseline optimization algorithms using NAS-HPO-Bench-II.

Citations (12)

Summary

We haven't generated a summary for this paper yet.