Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speech Enhancement Based on Cyclegan with Noise-informed Training (2110.09924v2)

Published 19 Oct 2021 in eess.AS and cs.SD

Abstract: Cycle-consistent generative adversarial networks (CycleGAN) were successfully applied to speech enhancement (SE) tasks with unpaired noisy-clean training data. The CycleGAN SE system adopted two generators and two discriminators trained with losses from noisy-to-clean and clean-to-noisy conversions. CycleGAN showed promising results for numerous SE tasks. Herein, we investigate a potential limitation of the clean-to-noisy conversion part and propose a novel noise-informed training (NIT) approach to improve the performance of the original CycleGAN SE system. The main idea of the NIT approach is to incorporate target domain information for clean-to-noisy conversion to facilitate a better training procedure. The experimental results confirmed that the proposed NIT approach improved the generalization capability of the original CycleGAN SE system with a notable margin.

Citations (3)

Summary

We haven't generated a summary for this paper yet.