Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient and Consistent Data-Driven Model Selection for Time Series (2110.09785v1)

Published 19 Oct 2021 in math.ST and stat.TH

Abstract: This paper studies the model selection problem in a large class of causal time series models, which includes both the ARMA or AR($\infty$) processes, as well as the GARCH or ARCH($\infty$), APARCH, ARMA-GARCH and many others processes. We first study the asymptotic behavior of the ideal penalty that minimizes the risk induced by a quasi-likelihood estimation among a finite family of models containing the true model. Then, we provide general conditions on the penalty term for obtaining the consistency and efficiency properties. We notably prove that consistent model selection criteria outperform classical AIC criterion in terms of efficiency. Finally, we derive from a Bayesian approach the usual BIC criterion, and by keeping all the second order terms of the Laplace approximation, a data-driven criterion denoted KC'. Monte-Carlo experiments exhibit the obtained asymptotic results and show that KC' criterion does better than the AIC and BIC ones in terms of consistency and efficiency.

Summary

We haven't generated a summary for this paper yet.