Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Not to Reconstruct Anomalies (2110.09742v2)

Published 19 Oct 2021 in cs.CV

Abstract: Video anomaly detection is often seen as one-class classification (OCC) problem due to the limited availability of anomaly examples. Typically, to tackle this problem, an autoencoder (AE) is trained to reconstruct the input with training set consisting only of normal data. At test time, the AE is then expected to well reconstruct the normal data while poorly reconstructing the anomalous data. However, several studies have shown that, even with only normal data training, AEs can often start reconstructing anomalies as well which depletes the anomaly detection performance. To mitigate this problem, we propose a novel methodology to train AEs with the objective of reconstructing only normal data, regardless of the input (i.e., normal or abnormal). Since no real anomalies are available in the OCC settings, the training is assisted by pseudo anomalies that are generated by manipulating normal data to simulate the out-of-normal-data distribution. We additionally propose two ways to generate pseudo anomalies: patch and skip frame based. Extensive experiments on three challenging video anomaly datasets demonstrate the effectiveness of our method in improving conventional AEs, achieving state-of-the-art performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Marcella Astrid (22 papers)
  2. Muhammad Zaigham Zaheer (22 papers)
  3. Jae-Yeong Lee (3 papers)
  4. Seung-Ik Lee (16 papers)
Citations (41)

Summary

We haven't generated a summary for this paper yet.