Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimum $\ell_{1}$-norm interpolators: Precise asymptotics and multiple descent (2110.09502v1)

Published 18 Oct 2021 in math.ST, cs.IT, cs.LG, eess.SP, math.IT, stat.ML, and stat.TH

Abstract: An evolving line of machine learning works observe empirical evidence that suggests interpolating estimators -- the ones that achieve zero training error -- may not necessarily be harmful. This paper pursues theoretical understanding for an important type of interpolators: the minimum $\ell_{1}$-norm interpolator, which is motivated by the observation that several learning algorithms favor low $\ell_1$-norm solutions in the over-parameterized regime. Concretely, we consider the noisy sparse regression model under Gaussian design, focusing on linear sparsity and high-dimensional asymptotics (so that both the number of features and the sparsity level scale proportionally with the sample size). We observe, and provide rigorous theoretical justification for, a curious multi-descent phenomenon; that is, the generalization risk of the minimum $\ell_1$-norm interpolator undergoes multiple (and possibly more than two) phases of descent and ascent as one increases the model capacity. This phenomenon stems from the special structure of the minimum $\ell_1$-norm interpolator as well as the delicate interplay between the over-parameterized ratio and the sparsity, thus unveiling a fundamental distinction in geometry from the minimum $\ell_2$-norm interpolator. Our finding is built upon an exact characterization of the risk behavior, which is governed by a system of two non-linear equations with two unknowns.

Citations (18)

Summary

We haven't generated a summary for this paper yet.