Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SafeAccess+: An Intelligent System to make Smart Home Safer and Americans with Disability Act Compliant (2110.09273v1)

Published 14 Sep 2021 in cs.CY, cs.AI, cs.CV, and eess.SP

Abstract: Smart homes are becoming ubiquitous, but they are not Americans with Disability Act (ADA) compliant. Smart homes equipped with ADA compliant appliances and services are critical for people with disabilities (i.e., visual impairments and limited mobility) to improve independence, safety, and quality of life. Despite all advancements in smart home technologies, some fundamental design and implementation issues remain. For example, people with disabilities often feel insecure to respond when someone knocks on the door or rings the doorbell. In this paper, we present an intelligent system called "SafeAccess+" to build safer and ADA compliant premises (e.g. smart homes, offices). The key functionalities of the SafeAccess+ are: 1) Monitoring the inside/outside of premises and identifying incoming people; 2) Providing users relevant information to assess incoming threats (e.g., burglary, robbery) and ongoing crimes 3) Allowing users to grant safe access to homes for friends/family members. We have addressed several technical and research challenges: - developing models to detect and recognize person/activity, generating image descriptions, designing ADA compliant end-end system. In addition, we have designed a prototype smart door showcasing the proof-of-concept. The premises are expected to be equipped with cameras placed in strategic locations that facilitate monitoring the premise 24/7 to identify incoming persons and to generate image descriptions. The system generates a pre-structured message from the image description to assess incoming threats and immediately notify the users. The completeness and generalization of models have been ensured through a rigorous quantitative evaluation. The users' satisfaction and reliability of the system has been measured using PYTHEIA scale and was rated excellent (Internal Consistency-Cronbach's alpha is 0.784, Test-retest reliability is 0.939 )

Citations (2)

Summary

We haven't generated a summary for this paper yet.