Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Revealing Disocclusions in Temporal View Synthesis through Infilling Vector Prediction (2110.08805v1)

Published 17 Oct 2021 in cs.CV

Abstract: We consider the problem of temporal view synthesis, where the goal is to predict a future video frame from the past frames using knowledge of the depth and relative camera motion. In contrast to revealing the disoccluded regions through intensity based infilling, we study the idea of an infilling vector to infill by pointing to a non-disoccluded region in the synthesized view. To exploit the structure of disocclusions created by camera motion during their infilling, we rely on two important cues, temporal correlation of infilling directions and depth. We design a learning framework to predict the infilling vector by computing a temporal prior that reflects past infilling directions and a normalized depth map as input to the network. We conduct extensive experiments on a large scale dataset we build for evaluating temporal view synthesis in addition to the SceneNet RGB-D dataset. Our experiments demonstrate that our infilling vector prediction approach achieves superior quantitative and qualitative infilling performance compared to other approaches in literature.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.