Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mapping illegal waste dumping sites with neural-network classification of satellite imagery (2110.08599v2)

Published 16 Oct 2021 in cs.LG, cs.CV, and cs.CY

Abstract: Public health and habitat quality are crucial goals of urban planning. In recent years, the severe social and environmental impact of illegal waste dumping sites has made them one of the most serious problems faced by cities in the Global South, in a context of scarce information available for decision making. To help identify the location of dumping sites and track their evolution over time we adopt a data-driven model from the machine learning domain, analyzing satellite images. This allows us to take advantage of the increasing availability of geo-spatial open-data, high-resolution satellite imagery, and open source tools to train machine learning algorithms with a small set of known waste dumping sites in Buenos Aires, and then predict the location of other sites over vast areas at high speed and low cost. This case study shows the results of a collaboration between Dymaxion Labs and Fundaci\'on Bunge y Born to harness this technique in order to create a comprehensive map of potential locations of illegal waste dumping sites in the region.

Citations (7)

Summary

We haven't generated a summary for this paper yet.