Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Correlation Clustering with Asymmetric Noise (2110.08385v1)

Published 15 Oct 2021 in cs.SI, cs.LG, and math.OC

Abstract: Graph clustering problems typically aim to partition the graph nodes such that two nodes belong to the same partition set if and only if they are similar. Correlation Clustering is a graph clustering formulation which: (1) takes as input a signed graph with edge weights representing a similarity/dissimilarity measure between the nodes, and (2) requires no prior estimate of the number of clusters in the input graph. However, the combinatorial optimization problem underlying Correlation Clustering is NP-hard. In this work, we propose a novel graph generative model, called the Node Factors Model (NFM), which is based on generating feature vectors/embeddings for the graph nodes. The graphs generated by the NFM contain asymmetric noise in the sense that there may exist pairs of nodes in the same cluster which are negatively correlated. We propose a novel Correlation Clustering algorithm, called \anormd, using techniques from semidefinite programming. Using a combination of theoretical and computational results, we demonstrate that $\texttt{$\ell_2$-norm-diag}$ recovers nodes with sufficiently strong cluster membership in graph instances generated by the NFM, thereby making progress towards establishing the provable robustness of our proposed algorithm.

Summary

We haven't generated a summary for this paper yet.