Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

C-AllOut: Catching & Calling Outliers by Type (2110.08257v1)

Published 13 Oct 2021 in cs.LG and cs.AI

Abstract: Given an unlabeled dataset, wherein we have access only to pairwise similarities (or distances), how can we effectively (1) detect outliers, and (2) annotate/tag the outliers by type? Outlier detection has a large literature, yet we find a key gap in the field: to our knowledge, no existing work addresses the outlier annotation problem. Outliers are broadly classified into 3 types, representing distinct patterns that could be valuable to analysts: (a) global outliers are severe yet isolate cases that do not repeat, e.g., a data collection error; (b) local outliers diverge from their peers within a context, e.g., a particularly short basketball player; and (c) collective outliers are isolated micro-clusters that may indicate coalition or repetitions, e.g., frauds that exploit the same loophole. This paper presents C-AllOut: a novel and effective outlier detector that annotates outliers by type. It is parameter-free and scalable, besides working only with pairwise similarities (or distances) when it is needed. We show that C-AllOut achieves on par or significantly better performance than state-of-the-art detectors when spotting outliers regardless of their type. It is also highly effective in annotating outliers of particular types, a task that none of the baselines can perform.

Citations (1)

Summary

We haven't generated a summary for this paper yet.