Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Flat Wall Theorem for Matching Minors in Bipartite Graphs (2110.07553v1)

Published 14 Oct 2021 in math.CO and cs.DM

Abstract: A major step in the graph minors theory of Robertson and Seymour is the transition from the Grid Theorem which, in some sense uniquely, describes areas of large treewidth within a graph, to a notion of local flatness of these areas in form of the existence of a large flat wall within any huge grid of an H-minor free graph. In this paper, we prove a matching theoretic analogue of the Flat Wall Theorem for bipartite graphs excluding a fixed matching minor. Our result builds on a a tight relationship between structural digraph theory and matching theory and allows us to deduce a Flat Wall Theorem for digraphs which substantially differs from a previously established directed variant of this theorem.

Summary

We haven't generated a summary for this paper yet.