Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A theory of quantum subspace diagonalization (2110.07492v2)

Published 14 Oct 2021 in quant-ph, cs.NA, and math.NA

Abstract: Quantum subspace diagonalization methods are an exciting new class of algorithms for solving large\rev{-}scale eigenvalue problems using quantum computers. Unfortunately, these methods require the solution of an ill-conditioned generalized eigenvalue problem, with a matrix pair corrupted by a non-negligible amount of noise that is far above the machine precision. Despite pessimistic predictions from classical \rev{worst-case} perturbation theories, these methods can perform reliably well if the generalized eigenvalue problem is solved using a standard truncation strategy. By leveraging and advancing classical results in matrix perturbation theory, we provide a theoretical analysis of this surprising phenomenon, proving that under certain natural conditions, a quantum subspace diagonalization algorithm can accurately compute the smallest eigenvalue of a large Hermitian matrix. We give numerical experiments demonstrating the effectiveness of the theory and providing practical guidance for the choice of truncation level. Our new results can also be of independent interest to solving eigenvalue problems outside the context of quantum computation.

Citations (45)

Summary

We haven't generated a summary for this paper yet.