Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Investigation of Multi-bridge Multilingual NMT models (2110.07304v1)

Published 14 Oct 2021 in cs.CL

Abstract: In this paper, we present an extensive investigation of multi-bridge, many-to-many multilingual NMT models (MB-M2M) ie., models trained on non-English language pairs in addition to English-centric language pairs. In addition to validating previous work which shows that MB-M2M models can overcome zeroshot translation problems, our analysis reveals the following results about multibridge models: (1) it is possible to extract a reasonable amount of parallel corpora between non-English languages for low-resource languages (2) with limited non-English centric data, MB-M2M models are competitive with or outperform pivot models, (3) MB-M2M models can outperform English-Any models and perform at par with Any-English models, so a single multilingual NMT system can serve all translation directions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Anoop Kunchukuttan (45 papers)
Citations (3)