Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relighting Humans in the Wild: Monocular Full-Body Human Relighting with Domain Adaptation (2110.07272v2)

Published 14 Oct 2021 in cs.GR

Abstract: The modern supervised approaches for human image relighting rely on training data generated from 3D human models. However, such datasets are often small (e.g., Light Stage data with a small number of individuals) or limited to diffuse materials (e.g., commercial 3D scanned human models). Thus, the human relighting techniques suffer from the poor generalization capability and synthetic-to-real domain gap. In this paper, we propose a two-stage method for single-image human relighting with domain adaptation. In the first stage, we train a neural network for diffuse-only relighting. In the second stage, we train another network for enhancing non-diffuse reflection by learning residuals between real photos and images reconstructed by the diffuse-only network. Thanks to the second stage, we can achieve higher generalization capability against various cloth textures, while reducing the domain gap. Furthermore, to handle input videos, we integrate illumination-aware deep video prior to greatly reduce flickering artifacts even with challenging settings under dynamic illuminations.

Citations (19)

Summary

We haven't generated a summary for this paper yet.