Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Convergence of Symmetrized Graph Laplacian on manifolds with boundary (2110.06988v3)

Published 13 Oct 2021 in math.NA and cs.NA

Abstract: We study the spectral convergence of a symmetrized Graph Laplacian matrix induced by a Gaussian kernel evaluated on pairs of embedded data, sampled from a manifold with boundary, a sub-manifold of $\mathbb{R}m$. Specifically, we deduce the convergence rates for eigenpairs of the discrete Graph-Laplacian matrix to the eigensolutions of the Laplace-Beltrami operator that are well-defined on manifolds with boundary, including the homogeneous Neumann and Dirichlet boundary conditions. For the Dirichlet problem, we deduce the convergence of the \emph{truncated Graph Laplacian}, which is recently numerically observed in applications, and provide a detailed numerical investigation on simple manifolds. Our method of proof relies on the min-max argument over a compact and symmetric integral operator, leveraging the RKHS theory for spectral convergence of integral operator and a recent pointwise asymptotic result of a Gaussian kernel integral operator on manifolds with boundary.

Citations (7)

Summary

We haven't generated a summary for this paper yet.