Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Life is not black and white -- Combining Semi-Supervised Learning with fuzzy labels (2110.06592v1)

Published 13 Oct 2021 in cs.CV and cs.AI

Abstract: The required amount of labeled data is one of the biggest issues in deep learning. Semi-Supervised Learning can potentially solve this issue by using additional unlabeled data. However, many datasets suffer from variability in the annotations. The aggregated labels from these annotation are not consistent between different annotators and thus are considered fuzzy. These fuzzy labels are often not considered by Semi-Supervised Learning. This leads either to an inferior performance or to higher initial annotation costs in the complete machine learning development cycle. We envision the incorporation of fuzzy labels into Semi-Supervised Learning and give a proof-of-concept of the potential lower costs and higher consistency in the complete development cycle. As part of our concept, we discuss current limitations, futures research opportunities and potential broad impacts.

Citations (2)

Summary

We haven't generated a summary for this paper yet.