Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Random separation property for stochastic Allen-Cahn-type equations (2110.06544v1)

Published 13 Oct 2021 in math.PR and math.AP

Abstract: We study a large class of stochastic $p$-Laplace Allen-Cahn equations with singular potential. Under suitable assumptions on the (multiplicative-type) noise we first prove existence, uniqueness, and regularity of variational solutions. Then, we show that a random separation property holds, i.e. almost every trajectory is strictly separated in space and time from the potential barriers. The threshold of separation is random, and we further provide exponential estimates on the probability of separation from the barriers. Eventually, we exhibit a convergence-in-probability result for the random separation threshold towards the deterministic one, as the noise vanishes, and we obtain an estimate of the convergence rate.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.