Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CovXR: Automated Detection of COVID-19 Pneumonia in Chest X-Rays through Machine Learning (2110.06398v1)

Published 12 Oct 2021 in eess.IV and cs.CV

Abstract: Coronavirus disease 2019 (COVID-19) is the highly contagious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The standard diagnostic testing procedure for COVID-19 is testing a nasopharyngeal swab for SARS-CoV-2 nucleic acid using a real-time polymerase chain reaction (PCR), which can take multiple days to provide a diagnosis. Another widespread form of testing is rapid antigen testing, which has a low sensitivity compared to PCR, but is favored for its quick diagnosis time of usually 15-30 minutes. Patients who test positive for COVID-19 demonstrate diffuse alveolar damage in 87% of cases. Machine learning has proven to have advantages in image classification problems with radiology. In this work, we introduce CovXR as a machine learning model designed to detect COVID-19 pneumonia in chest X-rays (CXR). CovXR is a convolutional neural network (CNN) trained on over 4,300 chest X-rays. The performance of the model is measured through accuracy, F1 score, sensitivity, and specificity. The model achieves an accuracy of 95.5% and an F1 score of 0.954. The sensitivity is 93.5% and specificity is 97.5%. With accuracy above 95% and F1 score above 0.95, CovXR is highly accurate in predicting COVID-19 pneumonia on CXRs. The model achieves better accuracy than prior work and uses a unique approach to identify COVID-19 pneumonia. CovXR is highly accurate in identifying COVID-19 on CXRs of patients with a PCR confirmed positive diagnosis and provides much faster results than PCR tests.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Vishal Shenoy (1 paper)
  2. Sachin B. Malik (1 paper)
Citations (7)

Summary

We haven't generated a summary for this paper yet.