Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A scalable and fast artificial neural network syndrome decoder for surface codes (2110.05854v5)

Published 12 Oct 2021 in quant-ph, cs.ET, and cs.LG

Abstract: Surface code error correction offers a highly promising pathway to achieve scalable fault-tolerant quantum computing. When operated as stabilizer codes, surface code computations consist of a syndrome decoding step where measured stabilizer operators are used to determine appropriate corrections for errors in physical qubits. Decoding algorithms have undergone substantial development, with recent work incorporating ML techniques. Despite promising initial results, the ML-based syndrome decoders are still limited to small scale demonstrations with low latency and are incapable of handling surface codes with boundary conditions and various shapes needed for lattice surgery and braiding. Here, we report the development of an artificial neural network (ANN) based scalable and fast syndrome decoder capable of decoding surface codes of arbitrary shape and size with data qubits suffering from the depolarizing error model. Based on rigorous training over 50 million random quantum error instances, our ANN decoder is shown to work with code distances exceeding 1000 (more than 4 million physical qubits), which is the largest ML-based decoder demonstration to-date. The established ANN decoder demonstrates an execution time in principle independent of code distance, implying that its implementation on dedicated hardware could potentially offer surface code decoding times of O($\mu$sec), commensurate with the experimentally realisable qubit coherence times. With the anticipated scale-up of quantum processors within the next decade, their augmentation with a fast and scalable syndrome decoder such as developed in our work is expected to play a decisive role towards experimental implementation of fault-tolerant quantum information processing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. “Advances in quantum cryptography”. Adv. Opt. Photon. 12, 1012–1236 (2020).
  2. “Quantum chemistry in the age of quantum computing”. Chemical Reviews 119, 10856–10915 (2019).
  3. “Quantum computing for finance: Overview and prospects”. Reviews in Physics 4, 100028 (2019).
  4. “How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits”. Quantum 5, 433 (2021).
  5. “Even more efficient quantum computations of chemistry through tensor hypercontraction”. PRX Quantum 2, 030305 (2021).
  6. “Compilation of fault-tolerant quantum heuristics for combinatorial optimization”. PRX Quantum 1, 020312 (2020).
  7. “Topological quantum memory”. Journal of Mathematical Physics 43, 4452–4505 (2002).
  8. “Repeated quantum error detection in a surface code”. Nature Physics 16, 875–880 (2020).
  9. “Exponential suppression of bit or phase errors with cyclic error correction”. Nature 595, 383–387 (2021).
  10. “Surface code quantum error correction incorporating accurate error propagation” (2010). arXiv:1004.0255.
  11. “Towards practical classical processing for the surface code”. Physical Review Letters108 (2012).
  12. Austin G. Fowler. “Optimal complexity correction of correlated errors in the surface code” (2013). arXiv:1310.0863.
  13. “Fast fault-tolerant decoder for qubit and qudit surface codes”. Phys. Rev. A 92, 032309 (2015).
  14. “Fast decoders for topological quantum codes”. Phys. Rev. Lett. 104, 050504 (2010).
  15. “Fault-tolerant quantum computation with high threshold in two dimensions”. Phys. Rev. Lett. 98, 190504 (2007).
  16. Daniel Litinski. “A game of surface codes: Large-scale quantum computing with lattice surgery”. Quantum 3, 128 (2019).
  17. “Decoding small surface codes with feedforward neural networks”. Quantum Science and Technology 3, 015004 (2017).
  18. “General framework for constructing fast and near-optimal machine-learning-based decoder of the topological stabilizer codes”. Phys. Rev. Res. 2, 033399 (2020).
  19. “Neural decoder for topological codes”. Phys. Rev. Lett. 119, 030501 (2017).
  20. “Deep neural network probabilistic decoder for stabilizer codes”. Scientific Reports7 (2017).
  21. “Machine-learning-assisted correction of correlated qubit errors in a topological code”. Quantum 2, 48 (2018).
  22. “Efficient decoding of surface code syndromes for error correction in quantum computing” (2021). arXiv:2110.10896.
  23. “Reinforcement learning decoders for fault-tolerant quantum computation”. Machine Learning: Science and Technology 2, 025005 (2020).
  24. “Decoding surface codes with deep reinforcement learning and probabilistic policy reuse” (2022). arXiv:2212.11890.
  25. “Neural-network decoders for quantum error correction using surface codes: A space exploration of the hardware cost-performance tradeoffs”. IEEE Transactions on Quantum Engineering 3, 1–19 (2022).
  26. “Scalable neural decoder for topological surface codes”. Phys. Rev. Lett. 128, 080505 (2022).
  27. “Comparing neural network based decoders for the surface code”. IEEE Transactions on Computers 69, 300–311 (2020).
  28. Oscar Higgott. “Pymatching: A python package for decoding quantum codes with minimum-weight perfect matching” (2021). arXiv:2105.13082.
  29. “Deep neural decoders for near term fault-tolerant experiments”. Quantum Science and Technology 3, 044002 (2018).
  30. Daniel Gottesman. “Stabilizer codes and quantum error correction” (1997). arXiv:quant-ph/9705052.
  31. “A surface code quantum computer in silicon”. Science Advances 1, e1500707 (2015).
  32. “Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings”. Phys. Rev. B 93, 035306 (2016).
  33. “An exchange-based surface-code quantum computer architecture in silicon” (2021). arXiv:2107.11981.
  34. “Topological and subsystem codes on low-degree graphs with flag qubits”. Phys. Rev. X 10, 011022 (2020).
  35. “Strong resilience of topological codes to depolarization”. Phys. Rev. X 2, 021004 (2012).
  36. Ashley M. Stephens. “Fault-tolerant thresholds for quantum error correction with the surface code”. Phys. Rev. A 89, 022321 (2014).
  37. “Surface code quantum computing with error rates over 1%”. Phys. Rev. A 83, 020302 (2011).
  38. “Low overhead quantum computation using lattice surgery” (2019). arXiv:1808.06709.
  39. “Surface codes: Towards practical large-scale quantum computation”. Physical Review A86 (2012).
  40. Xiaotong Ni. “Neural network decoders for large-distance 2d toric codes”. Quantum 4, 310 (2020).
  41. “Nisq+: Boosting quantum computing power by approximating quantum error correction”. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). Pages 556–569. Los Alamitos, CA, USA (2020). IEEE Computer Society.
  42. “Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits”. npj Quantum Information5 (2019).
  43. “Tensorflow: Large-scale machine learning on heterogeneous distributed systems” (2016). arXiv:1603.04467.
  44. “Almost-linear time decoding algorithm for topological codes”. Quantum 5, 595 (2021).
  45. “Engineering long spin coherence times of spin–orbit qubits in silicon”. Nature Materials 20, 38–42 (2020).
  46. “The XZZX surface code”. Nature Communications12 (2021).
  47. “Benchmarking delay and energy of neural inference circuits”. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 5, 75–84 (2019).
  48. Austin G. Fowler. “Minimum weight perfect matching of fault-tolerant topological quantum error correction in average o⁢(1)𝑜1o(1)italic_o ( 1 ) parallel time” (2014). arXiv:1307.1740.
  49. “Machine learning & artificial intelligence in the quantum domain: a review of recent progress”. Reports on Progress in Physics 81, 074001 (2018).
  50. “Reinforcement learning for optimal error correction of toric codes”. Physics Letters A 384, 126353 (2020).
  51. “Neural ensemble decoding for topological quantum error-correcting codes”. Phys. Rev. A 101, 032338 (2020).
  52. “Deep q-learning decoder for depolarizing noise on the toric code”. Phys. Rev. Res. 2, 023230 (2020).
  53. “Decoding surface code with a distributed neural network–based decoder”. Quantum Machine Intelligence 2, 1–12 (2020).
  54. “Symmetries for a high-level neural decoder on the toric code”. Phys. Rev. A 102, 042411 (2020).
  55. “Quantum error correction for the toric code using deep reinforcement learning”. Quantum 3, 183 (2019).
  56. “Scalable neural network decoders for higher dimensional quantum codes”. Quantum 2, 68 (2018).
Citations (28)

Summary

We haven't generated a summary for this paper yet.