Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partial Counterfactual Identification from Observational and Experimental Data (2110.05690v1)

Published 12 Oct 2021 in cs.AI

Abstract: This paper investigates the problem of bounding counterfactual queries from an arbitrary collection of observational and experimental distributions and qualitative knowledge about the underlying data-generating model represented in the form of a causal diagram. We show that all counterfactual distributions in an arbitrary structural causal model (SCM) could be generated by a canonical family of SCMs with the same causal diagram where unobserved (exogenous) variables are discrete with a finite domain. Utilizing the canonical SCMs, we translate the problem of bounding counterfactuals into that of polynomial programming whose solution provides optimal bounds for the counterfactual query. Solving such polynomial programs is in general computationally expensive. We therefore develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data. Our algorithms are validated extensively on synthetic and real-world datasets.

Citations (52)

Summary

We haven't generated a summary for this paper yet.