Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explainable Fact-checking through Question Answering (2110.05369v1)

Published 11 Oct 2021 in cs.CL and cs.LG

Abstract: Misleading or false information has been creating chaos in some places around the world. To mitigate this issue, many researchers have proposed automated fact-checking methods to fight the spread of fake news. However, most methods cannot explain the reasoning behind their decisions, failing to build trust between machines and humans using such technology. Trust is essential for fact-checking to be applied in the real world. Here, we address fact-checking explainability through question answering. In particular, we propose generating questions and answers from claims and answering the same questions from evidence. We also propose an answer comparison model with an attention mechanism attached to each question. Leveraging question answering as a proxy, we break down automated fact-checking into several steps -- this separation aids models' explainability as it allows for more detailed analysis of their decision-making processes. Experimental results show that the proposed model can achieve state-of-the-art performance while providing reasonable explainable capabilities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jing Yang (320 papers)
  2. Didier Vega-Oliveros (2 papers)
  3. TaĆ­s Seibt (2 papers)
  4. Anderson Rocha (40 papers)
Citations (14)