Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bug Prediction Using Source Code Embedding Based on Doc2Vec (2110.04951v1)

Published 11 Oct 2021 in cs.SE

Abstract: Bug prediction is a resource demanding task that is hard to automate using static source code analysis. In many fields of computer science, machine learning has proven to be extremely useful in tasks like this, however, for it to work we need a way to use source code as input. We propose a simple, but meaningful representation for source code based on its abstract syntax tree and the Doc2Vec embedding algorithm. This representation maps the source code to a fixed length vector which can be used for various upstream tasks -- one of which is bug prediction. We measured this approach's validity by itself and its effectiveness compared to bug prediction based solely on code metrics. We also experimented on numerous machine learning approaches to check the connection between different embedding parameters with different machine learning models. Our results show that this representation provides meaningful information as it improves the bug prediction accuracy in most cases, and is always at least as good as only using code metrics as features.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tamás Aladics (2 papers)
  2. Judit Jász (1 paper)
  3. Rudolf Ferenc (12 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.