Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selectable Set Randomized Kaczmarz (2110.04703v2)

Published 10 Oct 2021 in math.NA and cs.NA

Abstract: The Randomized Kaczmarz method (RK) is a stochastic iterative method for solving linear systems that has recently grown in popularity due to its speed and low memory requirement. Selectable Set Randomized Kaczmarz (SSRK) is an variant of RK that leverages existing information about the Kaczmarz iterate to identify an adaptive "selectable set" and thus yields an improved convergence guarantee. In this paper, we propose a general perspective for selectable set approaches and prove a convergence result for that framework. In addition, we define two specific selectable set sampling strategies that have competitive convergence guarantees to those of other variants of RK. One selectable set sampling strategy leverages information about the previous iterate, while the other leverages the orthogonality structure of the problem via the Gramian matrix. We complement our theoretical results with numerical experiments that compare our proposed rules with those existing in the literature.

Citations (4)

Summary

We haven't generated a summary for this paper yet.