Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An old problem of Erdős: a graph without two cycles of the same length (2110.04696v3)

Published 10 Oct 2021 in math.CO

Abstract: In 1975, P. Erd\H{o}s proposed the problem of determining the maximum number $f(n)$ of edges in a graph on $n$ vertices in which any two cycles are of different lengths. Let $f{\ast}(n)$ be the maximum number of edges in a simple graph on $n$ vertices in which any two cycles are of different lengths. Let $M_n$ be the set of simple graphs on $n$ vertices in which any two cycles are of different lengths and with the edges of $f{\ast}(n)$. Let $mc(n)$ be the maximum cycle length for all $G \in M_n$. In this paper, it is proved that for $n$ sufficiently large, $mc(n)\leq \frac{15}{16}n$. We make the following conjecture: $$\lim_{n \rightarrow \infty} {mc(n)\over n}= 0.$$

Summary

We haven't generated a summary for this paper yet.