Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ranking Cost: Building An Efficient and Scalable Circuit Routing Planner with Evolution-Based Optimization (2110.03939v1)

Published 8 Oct 2021 in cs.AI

Abstract: Circuit routing has been a historically challenging problem in designing electronic systems such as very large-scale integration (VLSI) and printed circuit boards (PCBs). The main challenge is that connecting a large number of electronic components under specific design rules involves a very large search space. Early solutions are typically designed with hard-coded heuristics, which suffer from problems of non-optimal solutions and lack of flexibility for new design needs. Although a few learning-based methods have been proposed recently, they are typically cumbersome and hard to extend to large-scale applications. In this work, we propose a new algorithm for circuit routing, named Ranking Cost, which innovatively combines search-based methods (i.e., A* algorithm) and learning-based methods (i.e., Evolution Strategies) to form an efficient and trainable router. In our method, we introduce a new set of variables called cost maps, which can help the A* router to find out proper paths to achieve the global objective. We also train a ranking parameter, which can produce the ranking order and further improve the performance of our method. Our algorithm is trained in an end-to-end manner and does not use any artificial data or human demonstration. In the experiments, we compare with the sequential A* algorithm and a canonical reinforcement learning approach, and results show that our method outperforms these baselines with higher connectivity rates and better scalability.

Citations (1)

Summary

We haven't generated a summary for this paper yet.