Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning approaches to do size based reasoning on Retail Shelf objects to classify product variants (2110.03783v1)

Published 7 Oct 2021 in cs.CV and cs.LG

Abstract: There has been a surge in the number of Machine Learning methods to analyze products kept on retail shelves images. Deep learning based computer vision methods can be used to detect products on retail shelves and then classify them. However, there are different sized variants of products which look exactly the same visually and the method to differentiate them is to look at their relative sizes with other products on shelves. This makes the process of deciphering the sized based variants from each other using computer vision algorithms alone impractical. In this work, we propose methods to ascertain the size variant of the product as a downstream task to an object detector which extracts products from shelf and a classifier which determines product brand. Product variant determination is the task which assigns a product variant to products of a brand based on the size of bounding boxes and brands predicted by classifier. While gradient boosting based methods work well for products whose facings are clear and distinct, a noise accommodating Neural Network method is proposed for cases where the products are stacked irregularly.

Summary

We haven't generated a summary for this paper yet.