Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data-Centric Approach for Training Deep Neural Networks with Less Data (2110.03613v2)

Published 7 Oct 2021 in cs.AI

Abstract: While the availability of large datasets is perceived to be a key requirement for training deep neural networks, it is possible to train such models with relatively little data. However, compensating for the absence of large datasets demands a series of actions to enhance the quality of the existing samples and to generate new ones. This paper summarizes our winning submission to the "Data-Centric AI" competition. We discuss some of the challenges that arise while training with a small dataset, offer a principled approach for systematic data quality enhancement, and propose a GAN-based solution for synthesizing new data points. Our evaluations indicate that the dataset generated by the proposed pipeline offers 5% accuracy improvement while being significantly smaller than the baseline.

Citations (64)

Summary

We haven't generated a summary for this paper yet.