Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-preserving methods for smart-meter-based network simulations (2110.03491v1)

Published 7 Oct 2021 in cs.CR

Abstract: Smart-meters are a key component of energy transition. The large amount of data collected in near real-time allows grid operators to observe and simulate network states. However, privacy-preserving rules forbid the use of such data for any applications other than network operation and billing. Smart-meter measurements must be anonymised to transmit these sensitive data to a third party to perform network simulation and analysis. This work proposes two methods for data anonymisation that enable the use of raw active power measurements for network simulation and analysis. The first is based on an allocation of an externally sourced load database. The second consists of grouping smart-meter data with similar electric characteristics, then performing a random permutation of the network load-bus assignment. A benchmark of these two methods highlights that both provide similar results in bus-voltage magnitude estimation concerning ground-truth voltage.

Citations (2)

Summary

We haven't generated a summary for this paper yet.