Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal (Euclidean) Metric Compression (2110.03152v1)

Published 7 Oct 2021 in cs.CG and cs.DS

Abstract: We study the problem of representing all distances between $n$ points in $\mathbb Rd$, with arbitrarily small distortion, using as few bits as possible. We give asymptotically tight bounds for this problem, for Euclidean metrics, for $\ell_1$ (a.k.a.~Manhattan) metrics, and for general metrics. Our bounds for Euclidean metrics mark the first improvement over compression schemes based on discretizing the classical dimensionality reduction theorem of Johnson and Lindenstrauss (Contemp.~Math.~1984). Since it is known that no better dimension reduction is possible, our results establish that Euclidean metric compression is possible beyond dimension reduction.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com