Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NUS-IDS at FinCausal 2021: Dependency Tree in Graph Neural Network for Better Cause-Effect Span Detection (2110.02991v1)

Published 6 Oct 2021 in cs.CL

Abstract: Automatic identification of cause-effect spans in financial documents is important for causality modelling and understanding reasons that lead to financial events. To exploit the observation that words are more connected to other words with the same cause-effect type in a dependency tree, we construct useful graph embeddings by incorporating dependency relation features through a graph neural network. Our model builds on a baseline BERT token classifier with Viterbi decoding, and outperforms this baseline in cross-validation and during the competition. In the official run of FinCausal 2021, we obtained Precision, Recall, and F1 scores of 95.56%, 95.56% and 95.57% that all ranked 1st place, and an Exact Match score of 86.05% which ranked 3rd place.

Citations (5)

Summary

We haven't generated a summary for this paper yet.