Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian neural network unit priors and generalized Weibull-tail property (2110.02885v1)

Published 6 Oct 2021 in stat.ML and cs.LG

Abstract: The connection between Bayesian neural networks and Gaussian processes gained a lot of attention in the last few years. Hidden units are proven to follow a Gaussian process limit when the layer width tends to infinity. Recent work has suggested that finite Bayesian neural networks may outperform their infinite counterparts because they adapt their internal representations flexibly. To establish solid ground for future research on finite-width neural networks, our goal is to study the prior induced on hidden units. Our main result is an accurate description of hidden units tails which shows that unit priors become heavier-tailed going deeper, thanks to the introduced notion of generalized Weibull-tail. This finding sheds light on the behavior of hidden units of finite Bayesian neural networks.

Citations (9)

Summary

We haven't generated a summary for this paper yet.