Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning for Decentralized Multi-Robot Exploration With Macro Actions (2110.02181v2)

Published 5 Oct 2021 in cs.RO

Abstract: Cooperative multi-robot teams need to be able to explore cluttered and unstructured environments while dealing with communication dropouts that prevent them from exchanging local information to maintain team coordination. Therefore, robots need to consider high-level teammate intentions during action selection. In this letter, we present the first Macro Action Decentralized Exploration Network (MADE-Net) using multi-agent deep reinforcement learning (DRL) to address the challenges of communication dropouts during multi-robot exploration in unseen, unstructured, and cluttered environments. Simulated robot team exploration experiments were conducted and compared against classical and DRL methods where MADE-Net outperformed all benchmark methods in terms of computation time, total travel distance, number of local interactions between robots, and exploration rate across various degrees of communication dropouts. A scalability study in 3D environments showed a decrease in exploration time with MADE-Net with increasing team and environment sizes. The experiments presented highlight the effectiveness and robustness of our method.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com