Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Verified eigenvalue and eigenvector computations using complex moments and the Rayleigh$\unicode{x2013}$Ritz procedure for generalized Hermitian eigenvalue problems (2110.01822v3)

Published 5 Oct 2021 in math.NA and cs.NA

Abstract: We propose a verified computation method for eigenvalues in a region and the corresponding eigenvectors of generalized Hermitian eigenvalue problems. The proposed method uses complex moments to extract the eigencomponents of interest from a random matrix and uses the Rayleigh$\unicode{x2013}$Ritz procedure to project a given eigenvalue problem into a reduced eigenvalue problem. The complex moment is given by contour integral and approximated using numerical quadrature. We split the error in the complex moment into the truncation error of the quadrature and rounding errors and evaluate each. This idea for error evaluation inherits our previous Hankel matrix approach, whereas the proposed method enables verification of eigenvectors and requires half the number of quadrature points for the previous approach to reduce the truncation error to the same order. Moreover, the Rayleigh$\unicode{x2013}$Ritz procedure approach forms a transformation matrix that enables verification of the eigenvectors. Numerical experiments show that the proposed method is faster than previous methods while maintaining verification performance and works even for nearly singular matrix pencils and in the presence of multiple and nearly multiple eigenvalues.

Citations (2)

Summary

We haven't generated a summary for this paper yet.