Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

MetaPix: Domain Transfer for Semantic Segmentation by Meta Pixel Weighting (2110.01777v1)

Published 5 Oct 2021 in cs.CV and cs.AI

Abstract: Training a deep neural model for semantic segmentation requires collecting a large amount of pixel-level labeled data. To alleviate the data scarcity problem presented in the real world, one could utilize synthetic data whose label is easy to obtain. Previous work has shown that the performance of a semantic segmentation model can be improved by training jointly with real and synthetic examples with a proper weighting on the synthetic data. Such weighting was learned by a heuristic to maximize the similarity between synthetic and real examples. In our work, we instead learn a pixel-level weighting of the synthetic data by meta-learning, i.e., the learning of weighting should only be minimizing the loss on the target task. We achieve this by gradient-on-gradient technique to propagate the target loss back into the parameters of the weighting model. The experiments show that our method with only one single meta module can outperform a complicated combination of an adversarial feature alignment, a reconstruction loss, plus a hierarchical heuristic weighting at pixel, region and image levels.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.