Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Consistency Regularization Can Improve Robustness to Label Noise (2110.01242v1)

Published 4 Oct 2021 in cs.LG, cs.CV, and stat.ML

Abstract: Consistency regularization is a commonly-used technique for semi-supervised and self-supervised learning. It is an auxiliary objective function that encourages the prediction of the network to be similar in the vicinity of the observed training samples. Hendrycks et al. (2020) have recently shown such regularization naturally brings test-time robustness to corrupted data and helps with calibration. This paper empirically studies the relevance of consistency regularization for training-time robustness to noisy labels. First, we make two interesting and useful observations regarding the consistency of networks trained with the standard cross entropy loss on noisy datasets which are: (i) networks trained on noisy data have lower consistency than those trained on clean data, and(ii) the consistency reduces more significantly around noisy-labelled training data points than correctly-labelled ones. Then, we show that a simple loss function that encourages consistency improves the robustness of the models to label noise on both synthetic (CIFAR-10, CIFAR-100) and real-world (WebVision) noise as well as different noise rates and types and achieves state-of-the-art results.

Citations (17)

Summary

We haven't generated a summary for this paper yet.