Mixed-norm Amalgam Spaces (2110.01197v1)
Abstract: We introduce the mixed-norm amalgam spaces $(L{\vec{p}},L{\vec{s}})(\mathbb{R}n)$ and $(L{\vec{p}},L{\vec{s}}){\alpha}(\mathbb{R}n)$, and show their some basic properties. In addition, we find the predual $\mathcal{H}(\vec{p}',\vec{s}\,',\alpha')$ of mixed-norm amalgam spaces $(L{\vec{p}},\ell{\vec{s}}){\alpha}(\mathbb{R}n)$ by the dual spaces $(L{\vec{p}'},\ell{\vec{s}\,'})(\mathbb{R}n)$ of $(L{\vec{p}},\ell{\vec{s}})(\mathbb{R}n)$, where $(L{\vec{p}},L{\vec{s}})(\mathbb{R}n)=(L{\vec{p}},\ell{\vec{s}})(\mathbb{R}n)$ and $(L{\vec{p}},L{\vec{s}}){\alpha}(\mathbb{R}n)=(L{\vec{p}},\ell{\vec{s}}){\alpha}(\mathbb{R}n)$. Then, we study the strong-type estimates for fractional integral operators $I_{\gamma}$ on mixed-norm amalgam spaces $(L{\vec{p}},L{\vec{s}}){\alpha}(\mathbb{R}n)$. And, the strong-type estimates of linear commutators $[b,I_{\gamma}]$ generated by $b\in BMO(\mathbb{R}n)$ and $I_{\gamma}$ on mixed-norm amalgam spaces $(L{\vec{p}},L{\vec{s}}){\alpha}(\mathbb{R}n)$ are established as well. Furthermore, based on the dual theorem, the characterization of $BMO(\mathbb{R}n)$ by the boundedness of $[b,I_\gamma]$ from $(L{\vec{p}},L{\vec{s}}){\alpha}(\mathbb{R}n)$ to $(L{\vec{q}},L{\vec{s}}){\beta}(\mathbb{R}n)$ is given, which is a new result even for the classical amalgam spaces.