Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
67 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
452 tokens/sec
Kimi K2 via Groq Premium
190 tokens/sec
2000 character limit reached

Information Elicitation Meets Clustering (2110.00952v1)

Published 3 Oct 2021 in cs.GT, cs.LG, and econ.TH

Abstract: In the setting where we want to aggregate people's subjective evaluations, plurality vote may be meaningless when a large amount of low-effort people always report "good" regardless of the true quality. "Surprisingly popular" method, picking the most surprising answer compared to the prior, handle this issue to some extent. However, it is still not fully robust to people's strategies. Here in the setting where a large number of people are asked to answer a small number of multi-choice questions (multi-task, large group), we propose an information aggregation method that is robust to people's strategies. Interestingly, this method can be seen as a rotated "surprisingly popular". It is based on a new clustering method, Determinant MaxImization (DMI)-clustering, and a key conceptual idea that information elicitation without ground-truth can be seen as a clustering problem. Of independent interest, DMI-clustering is a general clustering method that aims to maximize the volume of the simplex consisting of each cluster's mean multiplying the product of the cluster sizes. We show that DMI-clustering is invariant to any non-degenerate affine transformation for all data points. When the data point's dimension is a constant, DMI-clustering can be solved in polynomial time. In general, we present a simple heuristic for DMI-clustering which is very similar to Lloyd's algorithm for k-means. Additionally, we also apply the clustering idea in the single-task setting and use the spectral method to propose a new aggregation method that utilizes the second-moment information elicited from the crowds.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube