Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-tensor Product-based TensorDecomposition for Neural Network Compression (2109.15200v1)

Published 30 Sep 2021 in cs.LG

Abstract: The existing tensor networks adopt conventional matrix product for connection. The classical matrix product requires strict dimensionality consistency between factors, which can result in redundancy in data representation. In this paper, the semi-tensor product is used to generalize classical matrix product-based mode product to semi-tensor mode product. As it permits the connection of two factors with different dimensionality, more flexible and compact tensor decompositions can be obtained with smaller sizes of factors. Tucker decomposition, Tensor Train (TT) and Tensor Ring (TR) are common decomposition for low rank compression of deep neural networks. The semi-tensor product is applied to these tensor decompositions to obtained their generalized versions, i.e., semi-tensor Tucker decomposition (STTu), semi-tensor train(STT) and semi-tensor ring (STR). Experimental results show the STTu, STT and STR achieve higher compression factors than the conventional tensor decompositions with the same accuracy but less training times in ResNet and WideResNetcompression. With 2% accuracy degradation, the TT-RN (rank = 14) and the TR-WRN (rank = 16) only obtain 3 times and99t times compression factors while the STT-RN (rank = 14) and the STR-WRN (rank = 16) achieve 9 times and 179 times compression factors, respectively.

Citations (4)

Summary

We haven't generated a summary for this paper yet.