Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty-aware Mean Teacher for Source-free Unsupervised Domain Adaptive 3D Object Detection (2109.14651v1)

Published 29 Sep 2021 in cs.CV

Abstract: Pseudo-label based self training approaches are a popular method for source-free unsupervised domain adaptation. However, their efficacy depends on the quality of the labels generated by the source trained model. These labels may be incorrect with high confidence, rendering thresholding methods ineffective. In order to avoid reinforcing errors caused by label noise, we propose an uncertainty-aware mean teacher framework which implicitly filters incorrect pseudo-labels during training. Leveraging model uncertainty allows the mean teacher network to perform implicit filtering by down-weighing losses corresponding uncertain pseudo-labels. Effectively, we perform automatic soft-sampling of pseudo-labeled data while aligning predictions from the student and teacher networks. We demonstrate our method on several domain adaptation scenarios, from cross-dataset to cross-weather conditions, and achieve state-of-the-art performance in these cases, on the KITTI lidar target dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Deepti Hegde (7 papers)
  2. Vishwanath Sindagi (5 papers)
  3. Velat Kilic (6 papers)
  4. A. Brinton Cooper (7 papers)
  5. Mark Foster (3 papers)
  6. Vishal Patel (10 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.