Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secure Multi-Party Computation based Privacy Preserving Data Analysis in Healthcare IoT Systems (2109.14334v1)

Published 29 Sep 2021 in cs.CR and cs.AI

Abstract: Recently, many innovations have been experienced in healthcare by rapidly growing Internet-of-Things (IoT) technology that provides significant developments and facilities in the health sector and improves daily human life. The IoT bridges people, information technology and speed up shopping. For these reasons, IoT technology has started to be used on a large scale. Thanks to the use of IoT technology in health services, chronic disease monitoring, health monitoring, rapid intervention, early diagnosis and treatment, etc. facilitates the delivery of health services. However, the data transferred to the digital environment pose a threat of privacy leakage. Unauthorized persons have used them, and there have been malicious attacks on the health and privacy of individuals. In this study, it is aimed to propose a model to handle the privacy problems based on federated learning. Besides, we apply secure multi party computation. Our proposed model presents an extensive privacy and data analysis and achieve high performance.

Citations (9)

Summary

We haven't generated a summary for this paper yet.