Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inexact Newton-CG Algorithms With Complexity Guarantees (2109.14016v2)

Published 28 Sep 2021 in math.OC

Abstract: We consider variants of a recently-developed Newton-CG algorithm for nonconvex problems \citep{royer2018newton} in which inexact estimates of the gradient and the Hessian information are used for various steps. Under certain conditions on the inexactness measures, we derive iteration complexity bounds for achieving $\epsilon$-approximate second-order optimality that match best-known lower bounds. Our inexactness condition on the gradient is adaptive, allowing for crude accuracy in regions with large gradients. We describe two variants of our approach, one in which the step-size along the computed search direction is chosen adaptively and another in which the step-size is pre-defined. To obtain second-order optimality, our algorithms will make use of a negative curvature direction on some steps. These directions can be obtained, with high-probability, using a certain randomized algorithm. In this sense, all of our results hold with high-probability over the run of the algorithm. We evaluate the performance of our proposed algorithms empirically on several machine learning models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.