Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Success at high peaks: a multiscale approach combining individual and expedition-wide factors (2109.13340v1)

Published 27 Sep 2021 in cs.SI, nlin.AO, physics.data-an, and physics.soc-ph

Abstract: This work presents a network-based data-driven study of the combination of factors that contribute to success in mountaineering. It simultaneously examines the effects of individual factors such as age, gender, experience etc., as well as expedition-wide factors such as number of camps, ratio of sherpas to paying climbers etc. Specifically, it combines the two perspectives into a multiscale network, i.e., a network of individual climber features within each expedition at the finer scale, and an expedition similarity network on the coarser scale. The latter is represented as a multiplex network where layers encode different factors. The analysis reveals that chances of failure to summit due to fatigue, altitude or logistical problems, drastically reduce when climbing with repeat partners, especially for experienced climbers. Additionally, node-centrality indicates that individual traits of youth and oxygen use are the strongest drivers of success. Further, the learning of network projections enables computation of correlations between intra-expedition networks and corresponding expedition success rates. Of expedition-wide factors, the expedition size and length layers are found to be strongly correlated with success rate. Lastly, community detection on the expedition-similarity network reveals distinct communities where a difference in success rates naturally emerges amongst the communities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.